
ADAl05 229 DEFENSE COMMUNICATIONS ENGINEERING CENTER RESTON VA F/6 9/2
PROBLEMS WITH THE MULTITASKING FACILITIES IN THE ADA PROGRAMMIN--ETC(U)
MAY 81 S L ZUCKERMAN

UNCLASSIFIED CEC-TN-16-N1 NL

(.JD

EEE.E..EE.EEI
EEEEEElllEEE

TN 16-81

DEFENSE COMMUNICATIONS ENGINEERING CENTER

TECHNICAL NOTE NO. 16-81

PROBLEMS WITH THE MULTITASKING

FACILITIES IN THE ADA PROGRAMMING LANGUAGE

MAY 1981 D~

A -

t. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

* ~~ ~ I. 10----t-*~ 7.- 03

.4 UNCLASS IFIED April 19R1
SCf I'Tt- "LASSIF|CATION OF THIS PAGE (When Data Entered)

0 REPORTDCMREAD INSTRUCTIONSBEFORE COMPLETING FORM
RE.ORXA ,B i2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

t: Cm 6-_81 Ad. 1 !
A. -TITLE'I'and SbHt) S. TYPE OF REPORT & PERIOD COVERED

Problems with the Multitasking Facilities Technical ote
in the Ada Programming Language. S. PERFORMING OP. REPORT NUMBER

7. AUTHOR() S. CONTRACT OR GRANT NUMBER(&)

1Susan LanaJZuckerman

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Defense Communications Engineering Center
Computer Systems Division, R00N/1860 Wiehle Ave., Reston, VA 22090N/

I. CONTROLLING OFFICE NAME AND ADDRESSDefense Communications Engineering Center / 11. NUMay1rWrFr
Computer Systems Division, R800 | UBROFAE
.1i60 Wlele v .son. VA 2290~ |

14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) IS. SECURITY CLASS. (of the report)

Unclassified
N/A__ _ _ _ _ _ _ _ _ _ _ _ _

as. DECL ASSI FICATION/ DOWNGRADING
- -- ~ SCHEDULE

MIA
IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

Review relevance 8 years from submission date

IS. KEY WORDS (Continue on reverse side If neceeary and Identify by block number)

Ada Programming Language Real-Time Applications
Embedded Applications Multiprocessing
Multitasking
High Order Languages

20. ABSTRACT (C'ntmEms a, ,emwer f If s fnenead idmtify by block number)

The Ada languageyas designed for military embedded computer applications,
and therefore it s multitasking facilities will be heavily utilized in DoD
software. However, Ada's multitasking facilities do not provide capabilities
equivalent to current multitasking facilities in existing languages. Ada's
unconventional multitasking facilities raise serious questions. Problem
areas are identified and discussed, and solutions are proposed. Because

Ada's multitasking facilities are only a small part of the total language,

D AN 73 wioo'IO6IOSL UNCLASSIFIED .)51 .
SECURITY CLASSIFICATION OF THIS PAGE (nhen .d)

t%

SECURtITY CLASSIFICAION OF THIS PAGE(3PIO3 Dots SADCMEe)

Block # 20 Abstract

-~changes and improvements can be made without impacting the remainder of

the language.--,,

UMAS SIFIED

SECURITY CLASSIFICATION OF THIS PAGE(WPh.fl Dots gntfrod)

TECHNICAL NOTE NO. 16-81

PROBLEMS WITH THE MULTITASKING FACILITIES

IN THE Ada PROGRAMMING LANGUAGE

MAY 11, 1981

Prepared by:

A, J NLANA ZIUCKERMAN -

Approved for Publication:

Dr. Robert Lyons
Chief, Computer Syste'W Division

FOREWORD

The Defense Communications Engineering Center (DCEC) Technical Notes
(TN's) are published to inform interested members of the defense community
regarding technical activities of the Center, completed and in progress. They
are intended to stimulate thinking and encourage information exchange; but
they do not represent an approved position or policy of DCEC, and should not
be used as authoritative guidance for related planning and/or further action.

Comments or technical inquiries concerning this document are welcome and
should be directed to:

Director
Defense Communications Engineering Center
1860 Wiehle Avenue
Reston, Virginia 22090

EXECUTIVE SUMMARY

The Ada language was designed for military embedded computer applications
including signal processing, weapon fire control, and data communications.
As such, Ada's multitasking facilities will be heavily utilized in DoD
software. The multitasking facilities in Ada depart from conventional methods
and present a unique and original design, requiring the realtime programmer to
think about tasking in a new and different way. The Ada multitasking
facilities do not provide equivalent capabilites of current multitasking
facilities in existing languages, and serious questions have been raised
concerning Ada's new multitasking mechanisms. It remains to be proven by
close analysis and extensive programming examples that these new concepts are
both complete and safe for DoD multitasking applications.

Serious problem areas in the design of the multitasking facilities in Ada
are identified in the text. For each language problem identified, reading
references are given when applicable, the problem is discussed, and a proposed
solution is recommended. The proposed changes would greatly improve the
usability, reliability, and maintainability of realtime software written in
Ada.

Fortunately, since the multitasking facilities of Ada are a small part of
the language design, and in particular are orthogonal to the rest of the
language, they may be changed and improved without impacting the majority of
the design of the Ada language. It is suspected that the multitasking
facilities of Ada were not reviewed by users and designers of realtime systems
during the Ada design phase, and therefore it is recommended that the language
be examined by realtime programmers and designers (e.g., designers of network
software) to determine if the multitasking capabilities meet the realtime
programming requirements. If Ada is found to be deficient in this area, it is
recommended that multitasking facilities similar to other extant realtime
languages, as discussed in this document, be incorporated into Ada.

2

2

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY 2

I. INTRODUCTION 4

II. ADA LANGUAGE ISSUES 5

1. TASK ACTIVATION 5

2. ENTRY CALL CONSTRUCT 6

3. SUSPEND AND RESUME CAPABILITIES 7

4. TASK ACTIVATION PARAMETERS 8

5. TASK TERMINATION 8

6. DEFAULT TASK PRIORITY 9

7. TASK SYNCHRONIZATION LIMITATIONS 10

8. RENDEZVOUS AND PRIORITY 10

9. BLOCKING TASK COMMUNICATION 11

10. RENDEZVOUS QUEUING DESIGN PROBLEM 12

11. PASSING SHARED DATA AS PARAMETERS 13

12. RUNTIME SPECIFICATION OF TASK PRIORITY 14

13. DURATION TYPE IMPLEMENTATION 15

III. CONCLUSIONS 17

REFERENCES 18

3

I. INTRODUCTION

The Ada language was designed for military embedded computer applications,
and therefore the multitasking facilities of Ada will be heavily utilized in
DoD software. Yet problems remain with the multitasking facilities in Ada,
and it is questionable if Ada's multitasking facilities are sufficient for
realtime applications. The Ada multitasking facilities do not provide
equivalent capabilites of current multitasking facilities in existing
languages (e.g., SPL/I - the Navy's high order language for signal processing
and realtime applications, or CHILL - the CCITT proposed standard high order
language for telecommunications) or realtime operating systems (e.g., SDEX/M -
the Navy's runtime executive for the CMS-2 language). In addition, some of
the multitasking language constructs are vague and can be misunderstood.
Language features and constructs should be distinct and well-defined, and
should not occur as "side-effects" of other language features. Language
constructs should also reflect the programmer's algorithmic thinking (hence,
the IF THEN ELSE, 00 WHILE, CASE constructs, etc.). While the majority of the
Ada language follows this philosophy, the design of the multitasking portion
of the language abandoned these precepts. Discussions of Ada's multitasking
are often prefaced by the statement that multitasking is very difficult to
understand. Yet there is nothing difficult or complex about multitasking, and
in fact other languages provide multitasking facilities in well-defined,
easy-to-understand language constructs.

Fortunately, since the multitasking facilities of Ada are a small part of
the language design, and in particular are orthogonal to the rest of the
language, they may be changed and improved without impacting the majority of
the Ada language. It is suspected that the multitasking facilities of Ada
were not reviewed by users and designers of realtime systems during the Ada
design phase, and so it is recommended that the language be examined by
realtime programmers and designers (e.g., designers of network software) to
determine if the multitasking capabilities meet the realtime programming
requirements. If Ada is found to be deficient in this area, it is recommended
that multitasking facilities similar to CHILL, SPL/I or other realtime
languages be incorporated into Ada.

4

........F

I. ADA LANGUAGE ISSUES

The multitasking facilities in Ada depart from conventional methods and
present a unique and original design. Specifically, the multitasking
facilities are based upon a sole mechanism for task synchronization and
commiunication called the "rendezvous". The rendezvous concept, while
exciting, requires a new way of thinking about task communication. However,
there are serious problems related to rendezvous, and it remains to be proven
by extensive programming and analysis that rendezvous is both complete and
safe for DoD multitasking applications.

Traditional methods of task communication and synchronization such as
locks, counting semaphores, binary semaphores, and mailboxes are discussed in
most texts on operating systems theory. One such text, useful for background
reading, is listed as reference (7). Reference (1), the Ada Reference Manual,
is the defining document for the Ada language, and includes the multitasking

* design of Ada.

Problem areas in the design of the multitasking facilities in Ada are
discussed below. The following sections are organized by language issues.
For each language issue identified, reading references are given (when
applicable), a discussion of the problem is presented, and a proposed solution
is recommended. The Ada language is defined in reference (1). SPL/I, the
Navy's realtime programming language for signal processing and other
applications, and CROS, the runtime support for SPL/I, are defined in
references (2) and (3) respectively. CHILL, the CCITT standard communications
language, is defined in reference (4). The RED language, which was the
competitor of current Ada, is defined in reference (5). SOEX/M, the realtime
executive used with the Navy's CMS-2 language, is defined in reference (6).
The following references in the language issue discussions are to sections in
the Ada Reference Manual, reference (1), unless otherwise noted.

1. TASK ACTIVATION

Task activation occurs as a side effect of other language constructs
(e.g., calling a procedure or allocating an object), rather than via an
explicit language construct, and can result in insidious task blocking effects.

1.1 References

See section 9.3.

1.2 Discussion

There are two ways to activate a task in Ada. One way is to call a
procedure which has the desired task declared immediately within its
declarative part. Such a task is said to be dependent upon the procedure.

The desired task is activated prior to the execution of the first statement of
the procedure; however, the procedure cannot return until the newly activated
task terminates, thus blocking the task calling the procedure. For example,
if a procedure B has a task C declared within its declarative part and task A
calls procedure B, then C will be activated but procedure B will not return
(and so task A will be blocked) until task C terminates (possibly never).

The other way to activate a task in Ada is to declare an access (i.e.,
pointer) type which designates a task object and then allocate the task
object. The allocator creates the task object and immediately effects its
activation. The scope containing the access type declaration (e.g.,

* procedure, task declaration) cannot be left until all task objects allocated
and activated have terminated.

Task activation is implicit within the Ada language, hidden within other
language constructs. Calling a procedure may cause a task to become blocked,
possibly for~ever. Similarly, allocating objects which contain task object
components may also cause a task to become blocked. Language constructs which
can block task execution should be distinct and easy to distinguish from
innocuous statements. In multitasking applications, programming errors often
result in tasks being hung up and blocked. Debugging this situation is
usually quite difficult and time consuming. Ada's method of task activation
is restrictive and hidden from the programmer, making software design,
debugging, and maintenance difficult; yet, Ada was designed to reduce software
development and maintenance costs and improve reliability.

1.3 Proposed Solution

The language should provide explicit task activation syntax distinct from
variable allocation and procedure invocation, such as

INITIATE task-object;

* (Note: The preliminary version of Ada contained an INITIATE statement; it was
deleted from the current version of the language). This would result in
improved program readability and clarity, and would facilitate program
debugging and maintenance.

2. ENTRY CALL CONSTRUCT

The entry call construct in Ada looks like the procedure call construct.

2.1 References

See section 9.5.

6

q

2.2 Discussion

The syntax for an entry call is identical to the syntax for a procedure
call. Entry calls and their corresponding accept statements can cause tasks
to become blocked. Due to the identical syntax, it is hard to find entry
calls when scanning code, making program debugging and maintenance difficult.
See the discussion under the preceeding paragraph pertaining to distinct
language constructs.

2.3 Proposed Solution

Make the entry call syntax distinct. For example, the following syntax
could be used:

RENDEZVOUS entry_name (actualparameterlist);

3. SUSPEND AND RESUME CAPABILITY

One cannot SUSPEND and RESUME tasks in Ada.

3.1 References

The SPL/I Common Realtime Operating System, the RED Language, and the
SDEX/M Executive all contain examples of the SUSPEND and RESUME functions.

3.2 Discussion

Often in realtime applications a situation (i.e., crisis) arises which
requires the suspension of current processing and a switch to a different
"urgent" processing mode. After the crisis mode completes (i.e., crisis
over), one needs to resume original processing. There is no way to do this in
Ada, other than by relying solely on task priorities (see problems with task
priorities in Ada, below). Other languages provide the capability to suspend
and resume tasks.

3.3 Proposed Solution

Add SUSPEND and RESUME statements to Ada. The SUSPEND statement should
cause the execution of the designated task to be suspended until it is
continued via the RESUME statement.

7

4. TASK ACTIVATION PARAMETERS

One cannot pass parameters to a task at activation.

4.1 References

The SPL/I, CHILL, and RED languages all permit passing parameters to tasks
at activation time.

4.2 Discussion

Often in realtime applications, the output of one task is used as input to
another task, whose output is in turn used as input to yet another task. The
following diagram exemplifies the situation where tasks depend on input data
provided by other tasks:

A I

I I I I I I I ! I I

task! !task! !task! !task!
'A_ B_ __ C' ! D'

A clear and straightforward method is needed to specify input and output
buffers to a task at activation time. In addition, a task may require
processing parameters which change from one activation of the task to another.

4.3 Proposed Solution

Ada should have the capability to pass parameters to a task at activation

similar to passing parameters to a procedure at invocation.

Example:

INITIATE task-object (parameterlist);

5. TASK TERMINATION

One cannot unconditionaly and immediately terminate a single task.

5.1 References

See sections 9.4 and 9.10.

8

5.2 Discussion

Often in realtime applications, a situation may occur which requires the
termination of current processing and a switch to a different mode of
processing. After the new mode completes, one may want to reactivate the
previously terminated task(s). This is similar to the situation in paragraph
3 above, except that one needs to terminate tasks rather than suspend them.
In Ada, normal task termination (reach end of task body), raising the task
FAILURE exception, and using the TERMINATE option of a SELECT statement all
cause the designated task to wait until all dependent tasks have terminated
before terminating the designated task. The ABORT statement immediately
terminates the designated task; however, it also immediately terminates all
dependent tasks and this may not be desired.

5.3 Proposed Solution

Keep the existing task termination facilities in Ada but add a HALT
statement that will unconditionally and immediately terminate only the
designated task. Depending on Ada compiler implementation, users could be
warned that the variables will disappear, and so dependent tasks should not
access any variables inherited via scoping rules.

6. DEFAULT TASK PRIORITY

Task priority is not well-defined in Ada.

6.1 References

See section 9.8.

6.2 Discussion

Task priorities are essential to realtime applications. In Ada, task
priority is specified via a compiler pragma. The priority pragma is not
required and if it is not specified, a task's priority is not defined. Since
task dispatching utilizes priority, a task which does not have a specified
priority must be defined a default priority by the underlying operating system
of any implementation. The various Ada implementations may treat the
undefined case differently.

6.3 Proposed Solution

Define a default priority which should be known to the programmer. Most
likely, the default priority should be the lowest priority possible.

9

77{

7. TASK SYNCHRONIZATION LIMITATIONS

Task synchronization mechanisms are limited in Ada

7.1 References

See section 9.5.

7.2 Discussion

The only facility in Ada for task synchronization is the entry call.
Entry calls are powerful tools for the programmner: however, they are somewhat
restrictive in use and they have an associated runtime overhead. Semaphores
are the classical synchronization mechanism in computer science. There are no
semaphores predefined in Ada. Counting semaphores and binary semaphores could
be built using e...a-y calls defined in separate "service"' tasks (e.g., define
entries PSEMAPHORE and VSEMAPHORE in a task named COUNTING SEMAPHORE, and have
similar entries in a task named BINARYSEMAPHORE). Implementing semaphores in
this manner results in increased runtime overhead due to the additional

* dispatching and handling of the service tasks. It would be more efficient to
have semaphores built directly into the language. In addition, having the
individual users define and implement semaphores in this manner would result
in various incompatible runtime libraries and would minimize software sharing.

7.3 Proposed Solution.

Despite the problems with rendezvous (see below), it is recommended that
the rendezvous facilities be left in Ada, but that additional synchronization
mechanisms be added to the language (e.g., semaphores, regions, send and
receive). By adding these features to the language, they could be implemented
much more efficiently and would be available for common use. Realtime
programmers would then have greater choice and flexibility in achieving task
synchronization.

8. RENDEZVOUS AND PRIORITY

When two tasks attempting rendezvous have different priorities unexpected
delays may occur.

8.1 References

See section 9.8.

I.

10

8.2 Discussion

When the priority of a task doing an entry call differs from the task
containing the entry, the rendezvous occurs via executing the called task at
the higher priority. However, the calling task must wait for the called task
to accept the rendezvous, which can result in unexpected delays. This is
best explained by examples.

In the Ada language, rendezvous occurs as follows: If task A calls an
entry defined in task B, task A and/or task B wait until A calls the entry and
B accepts the entry. When both of these events occur, A is suspended while B
executes the entry, and then A and B separate and continue their independent
executions. Problems may occur when tasks A and B have different priorities.
In particular, A may have a high (important) priority while B has a low
(unimportant) priority. Then even though B may be ready to accept A's entry
call, when A does the entry call A will be suspended until all tasks of
priority less than A but greater than B have executed (because B cannot accept
the entry call until it can run at its priority).

On the other hand, if the priority of task B is higher than the priority
of task A, then task B will possibly waste CPU time by being swapped in and
out and given unnecessary access to the CPU when it is waiting for a lower
priority task A to do the entry call. This would occur if "service" tasks
(e.g., similar to COUNTING SEMAPHORE described above) were assigned higher
priorities than the tasks That used them.

8.3 Proposed Solution

This is a difficult problem that requires further study. One possibility
is discussed here; however it remains to be shown that this is a safe
solution. When a higher priority task does an entry call to a lower priority
task, let the called task temporarily inherit the calling task's priority
immediately (instead of only inheriting the calling task's priority during the
actual rendezvous). Questions related to this solution remain to be studied.
For example, consider the situation where several tasks do an entry call to a
task and are queued. At what point should the called task's priority change?
What happens if the called task is already involved in a rendezvous with a
different task? Also, what happens if the called task's priority is
increased, but it never performs the rendezvous (i.e., never executes an
ACCEPT statement)? The unexpected task delay described above may be an
inherent hazard of the rendezvous mechanism, and there may not be a solutionto this problem.

9. BLOCKING TASK COMMUNICATION

A task cannot "SEND" a message to another task and continue execution
prior to the "receipt" of the message.

11c
m i .

9.1 References

The CHILL and RED languages both have SEND and RECEIVE mechanisms.

9.2 Discussion

This problem is a result of the design of rendezvous, which requires that
both tasks wait for each other, rendezvous together, and then separate.
Realtime tasks often need to signal or send data to another task without
waiting for it to receive the signal or data. The best that can be done
currently in Ada is for two tasks to exchange messages via a MAILBOX service
task that has SEND and RECEIVE entries defined within it. This requires that
the two tasks desiring to communicate rendezvous with the MAILBOX task rather
than with each other; however, this alternative still assumes that the
MAILBOX task is always available to rendezvous. There is no asynchronous,
nonblocking communication path between tasks in Ada.

9.3 Proposed Solution

Add mailboxes and SEND and RECEIVE facilities to Ada, similar to the
MAILBOX facility in the RED language.

10. RENDEZVOUS QUEUING DESIGN PROBLEM

Tasks waiting for rendezvous to occur are queued in FIFO (first-in,
(first-out) order rather than priority order, causing higher priority tasks to

wait for lower priority tasks to run.

10.1 References

See section 9.5.

10.2 Discussion

If two or more tasks do an entry call to a task, the task selected for
rendezvous first is the task that executed the entry call first (tasks are

queued waiting for rendezvous in the order in which they attempted
rendezvous). Hence, if a low priority task does an entry call before a higher
rendezvous, the low priority task is selected for rendezvous first.

Although other languages do not have the "rendezvous" concept, they do
have synchronization mechanisms which cause tasks to wait for various events
or conditions. Waiting tasks are often defined to be queued in priority
order rather than FIFO order so that high priority tasks are not blocked by

12

lower priority ones. For example, SPL/I processes (tasks) waiting for
semaphores or resources are queued in priority order; and CHILL processes may
specify a queueing priority when they can conceivably become blocked.

10.3 Proposed Solution

Queue tasks waiting for rendezvous in task priority order, and for a given
priority queue the tasks in FIFO order.

11. PASSING SHARED DATA AS PARAMETERS

The implementation for passing IN and INOUT parameters to a procedure (or
rendezvous) is not defined; this impacts multitasking.

11.1 References

* See section 6.2.

11.2 Discussion

The implementation of passing IN and INOUT parameters is not defined for
arrays, records, and private type data. The Ada Reference Manual states that
any program that relies on any one particular implementation is erroneous.
This is fine for non-multitasking applications, as the decision to pass
parameters by value or by reference simply affects the efficiency of the
procedure and not the results of the procedure. However, in multitasking
applications the implementation must be known by the programmer, and in fact
controlled by the programmer.

Consider that if two or more tasks share data, each of them can
read/modify that data at any time. If one task passes shared data to a
procedure as an IN parameter, Ada leaves undefined whether the procedure

* always accesses the value the data had at the time of procedure invocation or
whether the procedure accesses the current value of the data (possibly
modified by other tasks). In multitasking applications, sometimes it is
necessary that the former type of access occur (i.e., "call by value") and
sometimes it is essential that the latter type of access occur (i.e., "call by
reference"). As Ada is currently designed, it is unsafe to pass shared data
as parameters to procedures, and in addition procedures cannot perform
synchronization operations on their arguments. Similarly, the implementation
is also not defined for parameters passed to a task via rendezvous. The
consequences in this case are even worse because the rendezvous was designed
to guarantee mutual exclusion!

13

111CL7

11.3 Proposed Solution

The programmer must be given explicit control over the implementation of
parameter passing. The programmner needs to choose between the following
implementations: copy the value of the parameter at the time of procedure
invocation, versus, pass a pointer to the data and always access the current
value via the pointer. Given these requirements, there are several possible
solutions. One solution is to define IN to be "call by value', (i.e., the
parameter is copied into a local data area of the called procedure), and

* define a new keyword to designate "call by reference" (i.e., the parameter is
always accessed directly via a pointer); similarly define INOUT to be "call
by value" (i.e., the parameter is copied in and then copied out at procedure

* return), and add a new keyword to designate "call by reference". This would
give the programmer direct control of parameter passing mechanisms.

12. RUNTIME SPECIFICATION OF TASK PRIORITY

A task's priority cannot be specified at runtime.

*12.1 References

SPL/I allows a process's priority to, optionally, be specified at
activation time via the ACTIVATE statement, thus overriding the default static
priority (assigned at the time of software build). The CHILL language permits
a process to specify a priority when it becomes blocked.

12.2 Discussion

In Ada, a task's priority is assigned statically in the specification part
of a task declaration. For most situations, this method of specifying task
priority is very useful, as in realtime applications a task's priority is
normally assigned statically. However, it is sometimes necessary to override
a task's priority when it is activated at runtime. For example, during
"crisis" processing, it is often necessary to to startup some tasks with
increased or decreased priorities.

12.3 Proposed Solution

There should be an optional method of overriding a task's (statically
specified) priority at the time the task is activated. Assuming the INITIATE
statement described above is added to Ada, task priority should be specified
as follows:

INITIATE task (parameter-list) WITH PRIORITY p

14

13. DURATION TYPE IMPLEMENTATION

The definition of the DURATION type used in task DELAY timing is poorly
defined and too restrictive for 16-bit machines.

13.1 References

See sections 3.5.9 and 9.6.

13.2 Discussion

The DELAY statement is used to suspend the execution of the running task
for (at least) the amount of time specified. The amount of delay time is
specified via an argument of the predefined type DURATION. The Ada Reference
Manual states that the predefined type DURATION must be a fixed-point type
given in units of seconds, with the incremental delta to be left up to the
individual compiler implementations of Ada. There is an added requirement
that the DURATION type include both positive and negative values up to at
least the number of seconds in a day (86,400 seconds). (Note that the DELAY
of a negative value is defined to have no effect.)

Because the choice of an incremental delta is left up to individual
compiler implementationi, an indefinite number of programs written in Ada will
not be transportable between different compilers, thus severely limiting
software transportability. In addition, these Ada language requirements are
very difficult to implement on 16-bit computers (e.g., the PDP-ll). The
largest integer value that can be represented in unsigned binary arithmetic
using 16 bits is 65,536, while the largest integer value in two's complement
notation is only 32,767. If a compiler implementation limited the timing
increment to whole seconds (delta = 1), it would still be impossible to
implement DELAY times using a single word. In fact, realtime applications
require task DELAY time increments ranging from milliseconds (for signal
processing and multilevel secure data communications applications) to seconds
(for simple data communications protocols). For example, consider the
requirements of the following data communications projects: (1) OCA's
Communications Operating Systems/Network Front-End (COS/NFE) project requires
a task delay time resolution of 20 milliseconds; (2) the Air Force AMPE
project currently uses a task delay time resolution of one millisecond and is
planning to convert to time resolutions of 100 microseconds; and (3) both the
Mini R-TAC project and the ARPANET TIP software running on a PDP-11 under UNIX
require task DELAY time resolutions of one second.

Sixteen bit computers such as the PDP-11 are heavily utilized in realtime
applications, and in data communications applications in particular. In
addition, most interval timer clocks in computers that would be used to
implement DELAY times operate in time increments ranging from microseconds to
millisends, but certainly not in increments of seconds. To define Ada
language requirements that are quite difficult and expensive to implement on a
most likely target computer for Ada seems unwise. The increased cost of
implementing increments of sec nds ranging from -86,400 to v86,400 using

15

multiple words on 16-bit machines, in addition to the inefficiency of such an
implementation, make the DELAY time requirements described in the Ada
Reference Manual appear unreasonable. It is therefore recommended that the
Ada DURATION type requirements be modified.

13.3 Proposed Solution

it is preferable that the DURATION type be fully specified to maximize
software transportability, and that it be easy to implement on the majority of
extant target computers. Given these aims there are two recommendations.
First, the language requirement specifying that the range of time values in
the DURATION type must include the number of seconds in a day should be
deleted. This will avoid penalizing 16-bit target computers. Second, the
type DURATION should consist of integer values of units of time, and either
the units of the DURATION time should be changed to milliseconds (a common
fine unit of resolution) or the units of time should be left up to individual
implementations. This avoids the delta problem and would result in software
that is transportable dcross compilers. (Note that if the definition of time
units is left up to individual compiler implementations, Ada software will
compile properly on alien compilers, but a delay time inconsistency may occurat runtime.)

16

III. CONCLUSIONS

* Serious problems remain in the multitasking facilities of the Ada language
I which impact realtime applications such as data conunnications, signal

processing, and fire control. Some of the problems discussed in this
Technical Note can be circumvented through inefficient or unclear, "kiudgy"
programming. However, such convoluted programming methods obscure the
algorithmic intent and result in greatly decreased software maintainability,

.4 reliability, and efficiency.

The Ada Reference Manual consists of over 208 pages (excluding index and
some appendicies). Modifying the tasking portion of Ada would basically
involve rewriting chapter 9 of this document, which currently consists of only
16 pages. Because tasking is a small part of Ada and is orthogonal to the
rest of the language, changes to the tasking facilities would not impact the
remainder of Ada. The proposed changes would greatly improve the usability,
reliability, and maintainability of realtime software written in Ada. In
addition, it would simplify the implementation of the underlying operating
system necessary to support multitasking in Ada.

Since multiple Ada compiler developments are currently underway, these
multitasking issues need to be addressed as soon as possible. Most compiler
development efforts are delaying the implementation of tasking to the end. If
modifications to Ada's multitasking design are made in the near term, the
impact on these compilers would be minimized.

#4 17

REFERENCES

1. U.S. Department of Defense, "Reference Manual for the Ada Programing

Language", July 1980.

2. Naval Research Laboratory, "SPL/I Language Reference Manual", January 1977.

3. Naval Research Laboratory, "User's Guide for the SPL/I Common Realtime
Operating System (CROS)", April 1980.

4. The International Telegraph and Telephone Consultative Committee (CCITT),
"The CHILL Language Definition", May 1980.

5. Intermetrics Inc., "Reference Manual for the RED Language", March 1979.

6. NAVELEX 0967-LP-598-2710, "Computer Program Performance Specification
(CPPS) for Standard Executive for AN/UYK-20 and AN/AYK-14 Computers
(SDEX/M)", 1 November 1979.

7. Tsichritzis and Bernstein, "Operating Systems", Academic Press, 1974.

18

'0=7
i l 1 Ir I -' " -- - -p

DISTRIBUTION LIST

STANDARD:

RIO- 2 R200- 1
R102/R103/RI03R- I R300 - 1
R102M- 1 R400- 1
R102T - 9 (8 for stock) R500 - 1
R104 - 1 R700- 1
R110- 1 R800- 1
R123 - 1 (Library) NCS-TS - 1
R124A - 1 (for Archives) 101A- 1

312 - I
R1O2T - 12 (Unclassified/Unlimited Distribution)

DCA-EUR - 2 (Defense Communications Agency European Area
ATTN: Technical Library
APO New York 09131)

DCA-Pac - 3 (Commander
Defense Communications Agency Pacific Area
Wheeler AFB, HI 96854)

DCA SW PAC - 1 (Commander, DCA - Southwest Pacific Region
APO San Francisco 96274)

DCA NW PAC - 1 (Commander, DCA - Northwest Pacific Region
APO San Francisco 96328)

DCA KOREA - 1 (Chief, DCA - Korea Field Office
APO San Francisco 96301)

DCA-Okinawa - 1 (Chief, DCA - Okinawa Field Office
FPO Seattle 98773)

DCA-Guam - 1 (Chief, DCA - Guam Field Office
Box 141 NAVCAMS WESTPAC
FPO San Francisco 96630)

US NAV Shore EE PAC - 1 (U.S. Naval Shore Electronics Engineering
Activity Pacific, Box 130, ATTN: Code 420
Pearl Harbor, HI 96860)

1843 EE SQ - 1 (1843 EE Squadron, ATTN: EIEXM
Hickam AFB, HI 96853)

DCA FO ITALY - 1 (DCA Field Office Italy, Box 166
AFSOUTH (NATO), FPO New York 09524

(continued)

f°p

.#q

DISTRIBUTION LIST (cont'd)

USDCFO - (Unclassified/Unlimited Distribution)
(Chief, USDCFO/US NATO
APO New York 90667)

SPECIAL: C400 - 1
C600 - 1
WSE-WIS - 1

NAVMAT 08Y - 1 (Department of Navy
Naval Material Command
ATTN: MAT 08Y
Washington, D.C. 20360)

ASN(RE&S)- I (Assistant Secretary of the Navy

Research, Engineering and Systems
ATTN: Mr. W. R. Smith

Pentagon Room # 5E779
Washington, D.C. 20350)

* I

S.'l

, : iII I II 11 I " I . .. - -" "p

